

Adenoid Cystic Carcinoma Research Foundation

November 2018



# **ACCRF** Overview

Jeff Kaufman, Executive Director

### The Roots of ACCRF



ACCRF was founded by Marnie and Jeff Kaufman. Marnie was diagnosed with ACC at 38 years old when she had four boys under the age of 10.

ACCRF is a public charity established in December 2005 in Needham, Massachusetts, USA



### **ACCRF** Overview





## ACCRF Research Agenda



#### **Better Therapies and Outcomes for Patients**



#### **ACCRF Research Network**

#### **Academic Institutions**

MD Anderson University of Virginia Gothenburg University (Sweden) University of Melbourne (Australia) University of Munster (Germany) Seoul National University (Korea) Radboud University (Netherlands) University of Manchester (UK) Massachusetts General Hospital Memorial Sloan-Kettering Johns Hopkins Dana-Farber Cancer Institute University of New Mexico Massachusetts Institute of Technology Yale University

#### ACCRF

Encourages collaborations Provides Grants Hosts scientific meetings Manages PDX platform Engages Biopharma and Government

#### Government

National Institute of Dental and Craniofacial Research (NIDCR) National Cancer Institute (NCI)

#### **Private Industry**

South Texas Accelerated Research Therapeutics (START) Bethyl Labs Cell Signaling Technology Novartis Pfizer Eli Lilly Merck Bristol-Myers Squibb Abbott Bayer Astra Zeneca Glaxo Smith Kline Ayala Syndax



ACCRF Research Update

# **ACComplishments**

|                             | 2005                               | 2018                                                                                                                                                                                              |  |  |
|-----------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Biobanking                  | Limited                            | Repositories with hundreds of frozen tumor specimens                                                                                                                                              |  |  |
| Cell Lines                  | Multiple invalid models            | Misidentifications discovered; valid models developed                                                                                                                                             |  |  |
| Animal Models               | None                               | 20+ mouse xenografts developed; first transgenic models                                                                                                                                           |  |  |
| Genomics                    | Sporadic reports of translocations | <ul> <li>Discovery of recurrent MYB, MYBL1 and NFIB fusion genes</li> <li>Identification of additional molecular targets with potential therapies: NOTCH, FGFR, IGF-1R, HDAC</li> </ul>           |  |  |
| Preclinical Drug<br>Screens | None<br>in valid models            | <ul> <li>Open xenograft platform for academia and industry</li> <li>Strong relationships with biopharmaceutical companies</li> <li>100+ anti-cancer compounds screened in mouse models</li> </ul> |  |  |
| Mobilizing Patients         | Limited                            | Tissue donations, clinical trial accrual and \$15 million in donations                                                                                                                            |  |  |
| NIH Commitments             | Negligible                         | Over \$25MM for salivary gland tumor research (NIDCR)                                                                                                                                             |  |  |
| Clinical Trials             | Few, small & haphazard             | Multiple science-driven trials with improved designs, enrollment, data quality and patient outcomes                                                                                               |  |  |



#### How we think ACC works



Grade 1 No solid component





MYB or MYBL1 fusion or overexpression (90-95% of cases) Secondary alterations in other genes (*NOTCH1*, *FGFR*, *IGF*, *PI3K* and chromatin modifiers) drive disease progression

Therapies:

Research grants focused on finding MYB/L1 inhibitors

NOTCH inhibitors show early signal in NOTCH-mutant ACCs Clinical trials are investigating other targeted and immune therapies in ACC



7

### **Some Basic Research Questions**

- Do genes other than MYB or MYBL1 cause ACC?
- Do genes other than NOTCH1-4 cause ACC to be more aggressive?
- How do ACCs in various body sites differ?
- How do the 2 types of cells in ACC differ and interact?





### 2018 Reported ACC Trials

| Drug                                                 | Targets                    | Study Location  | ACC<br>Patients | Partial<br>Response | Progression<br>Required |
|------------------------------------------------------|----------------------------|-----------------|-----------------|---------------------|-------------------------|
| Lenvatenib (Lenvima)                                 | VEGFR, FGFR, PDGFR,<br>KIT | New York, USA   | 32              | 16%                 | Yes                     |
| Lenvatenib (Lenvima)                                 | VEGFR, FGFR, PDGFR,<br>KIT | Milan, Italy    | 28              | 11%                 | Yes                     |
| Apatinib                                             | VEGFR                      | Shanghai, China | 56              | 47%                 | No                      |
| Pembrolizumab (Keytruda)<br>and Vorinostat (Zolinza) | PD-1, HDAC                 | Seattle, USA    | 12              | 8%                  | Yes                     |

Partial Response is tumor shrinkage ≥30%



# **Open Trials**

#### • MYB

- MYB vaccine and Tislelizumab (PD1 inhibitor), Phase I, Peter Mac Cancer Center, Melbourne, Australia
- NOTCH
  - AL101 (NOTCH inhibitor), Phase II, Honor Health, Scottsdale, Arizona, with more sites to open through end of 2018/beginning 2019
  - CB-103 (NOTCH inhibitor), Phase I, Netherlands, Spain, and Switzerland
- Immunotherapy
  - Pembrolizumab (PD1 inhibitor) plus Docetaxel, Phase II, U of Chicago, Chicago, IL
  - Pembrolizumab (PD1 inhibitor) plus Radiation, Phase II, DFCI, Boston, MA
  - Nivolumab (PD1 inhibitor) plus lpilimumab, Phase II, Northwestern, Chicago, IL
- HDAC
  - Chidamide (HDAC inhibitor) plus Cisplatin, Phase II, Chinese Academy of Medical Sciences, Beijing, China



10

#### MYB DNA vaccine + PD-1 inhibitor

- *Rationale:* MYB is an oncogenic driver in several cancers (ACC, colon, T-ALL, etc.). 90-95% of ACC tumors overexpress MYB/L1.
- Vaccine designed to overcome the "self" antigen nature of MYB.
- Phase I trial opened for patients with advanced solid cancer including colon and ACC (Peter Mac Cancer Center, Australia).
- 1<sup>st</sup> metastatic ACC patient treated in September.





# NOTCH inhibitors (AL101 and CB-103)

- Rationale: Activating NOTCH1 mutations are enriched in recurrent/metastatic ACC patients (22%) and define a subset of patients with poor prognosis
- AL101 (GSI) Phase II trial is open to ACC patients with activating mutations in NOTCH 1, 2 3 or 4. Open in US now, possibly in Europe late next year
- CB-103 (pan NOTCH inhibitor) Phase I trial is now open to patients with solid tumors in Europe. ACC cohort tentatively scheduled to open in US and Europe in 2019.





## **Immunotherapy Trials**



- Pembrolizumab (PD1 inhibitor) plus Docetaxel, Phase II, U of Chicago, Chicago, IL
- Pembrolizumab (PD1 inhibitor) plus Radiation, Phase II, DFCI, Boston, MA
- Nivolumab (PD1 inhibitor) plus Ipilimumab (CTLA4 inhibitor), Phase II, Northwestern, Chicago, IL and MSK, New York, NY (recently completed)
- What is different about ACC tumors from exceptional responder patients?



# Forthcoming Trial Concepts

- Combinations of immunotherapy with targeted drugs that are active in ACC
- MDM2 inhibitor
- Entinostat (HDAC inhibitor) plus Cisplatin
- Targeted delivery of radiation using PSMA radiolabeled drugs (for ACCs with high PSMA levels)
- ATRA
- Plus more in the pipeline...



### Keep yourself updated...

• Sign up to receive ACCRF research updates via email...



• Check the "Clinical Trials - Current Studies" section on our website!



## **Tumor donation options**

• Online-consented tumor donation with *Pattern.org* 



• The Christie NHS in Manchester, UK (Rob Metcalf's lab)

https://www.accrf.org/take-action/assist-in-research/



## Summary

- ACCRF has jump-started the field of ACC research through:
  - World-class Scientific Advisory Board driving a directed agenda
  - Creation of biobanks, preclinical models and research network
  - Target discovery and validation leading to clinical trials
- ACCRF is prioritizing therapy discovery and innovative clinical trials, with several promising concepts in development
- We ask for your support to achieve our goal of having the <u>first</u> approved therapy for ACC by 2020



17



#### Adenoid Cystic Carcinoma **Research Foundation**

#### November 2018



Adel El-Naggar



Chris Moskaluk



Göran Stenman



Andy Futreal



**Michael Wick** 



David Sidransky

#### Thanks to ACC Research Heroes!





**Bruce Chabner** 

Robert Haddad



**Ned Sharpless** 







Irwin & Joan Jacobs

#### ACCelerate the CURE